Redes neuronales en la predicción de las fluctuaciones de la economía a partir del movimiento de los mercados de capitales

Loren Trigo, Sabatino Costanzo

Resumen


Este estudio analiza la capacidad de las redes neuronales para predecir la dirección de las economías de los Estados Unidos y México, con los índices rezagados de los mercados de capitales de cada país como insumos y el índice compuesto de indicadores adelantados de cada país (LEI, aquí tratado como índice coincidente) como salida resultante. La capacidad predictiva estable y significativa de las redes neuronales utilizadas fue establecida y su superioridad predictiva respecto a la de una regresión múltiple comparable fue medida con el método estadístico de medición de la precisión predictiva elaborado por Anatolyev y Gerko.

Palabras clave


redes neuronales; predicción fluctuaciones; economía; mercados de capitales

Texto completo:

PDF XML

Referencias


Anatolyev, Stanislav (2005), “A Trading Approach to Testing for Predictability”, Journal of Business and Economic Statistics, vol. 23, núm. 4, pp. 455-461.

Bishop, Cristopher (1995), Neuronal Networks for Pattern Recognition, Oxford, Claredon Press.

Conference Board (2004), Definición del LEI, http://www.tcb-indicators.org/methodology/component_description.cfm.

Cybenko, G. (1989), “Approximation by Superpositions of a Sigmoidal Function”, Math. Control Signals Systems, vol. 2, pp. 303-314.

Diebold, F. X., y G. D. Rudebusch (1993), “Further Evidence on Business-Cycle Duration Dependence”, J. H. Stock y M. Watson (comps.), Business Cyles, Indicators and Forecasting, Chicago, The University of Chicago Press.

Dotsey, Michael (1998), “The Predictive Content of the Interest Rate Term Spread for Future Economic Growth”, Economic Quarterly (verano).

Ducker, Michael J. (1997), “Strengthening the Case for the Yield Curve as a Predictor of U.S. Recessions”, Federal Reserve Bank of St. Louis Review, vol. 79, marzo-abril, pp. 41-51.

Estrella, Arturo, y Frederic S. Mishkin (1997), “The Predictive Power of the Term Structure of Interest Rates in Europe and the United States: Implications for the European Central Bank”, European Economic Review, vol. 41, julio, pp. 1375-1401.

--, y Gikas A. Hardouvelis(1991), “The Term Structure as a Predictor of Real Economic Activity”, Journal of Finance, vol. 46, junio, pp. 555-576.

Getely, E. (1996), Neuronal Networks for Financial Forecasting, Nueva York, John Wiley & Sons.

Gençay, R. (1998), “Optimization of Technical Trading Strategies and the Profitability in Security Markets”, Economics Letters 59, pp. 249-254.

Granger, C. W. J., y T. Terasvirta (1993), Modelling Nonlinear Economic Relationships, Oxford, Oxford University Press.

Haykin, Simon (1999), Neuronal Networks, A Comprehensive Foundation, Prentice Hall.

Hornik, K., M. Stinchoombe y H. White (1989), “Multilayer Feed-Forward Networks Are Universal Approximators”, Neural Networks, vol. 2, pp. 359-366.

Jaditz, T., L. A. Riddick y C. L. Sayers (1998), “Multivariate Nonlinear Forecasting: Using Financial Information to Forecast the Real Sector”, Macroeconomics Dynamics 2, pp. 369-382.

-- (2003), “A Nonlinear Approach to Forecasting with Leading Economic Indicators”, Studies in Nonlinear Dynamics & Econometrics 7, núm. 2, artículo 4, Berkeley Electronic Press.

Jurik, Mark (1994), “Back Percolation, Assigning Local Error in Feed-forward Perception Methods”, Braincel, New Haven, Promised Land Technologies, Inc.

Kaiser, R., y A. Maraval (1999), “Estimation of the Business Cycle –A Modified Hodrick Prescott Filter, Spanish Economic Review 1, pp. 175-206.

Kim et al (1996), “Detecting Asymmetries in Observed Linear Time Series and Unobserved Disturbances”, Studies in Nonlinear Dynamics and Econometrics 1, pp. 131-143.

Lahiri, Kajal, y Geoffrey Moore (1991), Leading Economic Indicators: New Approaches and Forecasting Records, Nueva York, Cambridge University Press.

Mitchel, W. C., y A. F. Burns (1983), “Statistical Indicators of Cyclical Revivals”, Business Cycles, Inflation, and Forecasting, Cambridge, National Bureau of Economic Research, segunda edición.

Moody, J., A. Levin y S. Rehfuss (1993), Predicting the U.S. Index of Industrial Production, Neuronal Network World 3-6, pp. 791-794.

Moore, Geoffrey (1961), Business Cycle Indicators, Princeton, Princeton University Press, vol. 1, tabla 3.2, p. 56.

Murphy, John J. (1991), Intermarket Technical Analysis, Nueva York, John Wiley & Sons, Inc.

-- (2004), Intermarket Analysis: Profiting from Global Market Relationships, Nueva York, John Wiley & Sons, Inc.

Natter, M., C. Haefke, T. Soni y H. Otruba (1994), “Macroeconomic Forecasting Using Neuronal Networks”, Second International Workshop on Neuronal Networks in the Capital Markets (NNCM), Pasadena.

Parisi, Antonino, Franco Parisi y José Luis Guerrero C. (2003), “Modelos predictivos de redes neuronales en índices bursátiles”, EL TRIMESTRE ECONÓMICO, vol. LXX, núm. 280, pp. 721-744.

Pesaran, M. H., y A. Timmermann (1992), “A Simple Nonparametric Test of Predictive Performance”, Journal of Business and Economic Statistics 10, pp. 461-465.

Refenes, A. P. (1995), Neuronal Networks in the Capital Markets, Nueva York, John Wiley & Sons.

Ruggiero, Murray (1996), “Using Correlation Analysis to Predict Trends”, Futures Magazine, febrero, pp. 46-49.

-- (1997), Cybernetic Trading Strategies, Nueva York, John Wiley & Sons, Inc.

-- (1998), “Intermarket Analysis is Fundamentally Sound”, Futures Magazine, abril, pp. 58-62.

-- (2001), “Intermarket Analysis & Economic Forecasting”, Futures Magazine, marzo, pp 60-62.

-- (2001), “The Economy & Markets: Trading the Relationship”, Futures Magazine, abril, pp 60-62.

Schwager, J. (1995), Fundamental Analysis, Nueva York, John Wiley & Sons, Inc.

Swansen, N., y H. White (1995), “A Model Selection Approach to Real-time Macroeconomic forecasting using Linear Models and Artificial Neuronal Networks”, Discussion Papers, Detpartment of Economics, Pennsylvania State University.

Stock, J.H. & M. Watson (1989), “New Indexes of Leading and Coincident Economic Indicators”, NBER Macroeconomics Annual, pp. 351-394.

--, y – (comps.) (1993), Business Cyles, Indicators and Forecasting, Chicago, The University of Chicago Press.

--, y -- (1993), “A Procedure for Predicting Recessions with Leading Indicators: Economic Issues and Recent Experience”, J. H. Stock y M. Watson (comps.), Business Cyles, Indicators and Forecasting, Chicago, The University of Chicago Press.

Tkacz, G (2000), “Neuronal Network Forecasting of Canadian GDP Growth”, proxima edición en International Journal of Forecasting.

Trippi, Robert R., y Efraim Turban (1996), Neuronal Networks in Finance and Investing, Chicago, Irwin Professional Publishing.

Verbrugge, R. (1997), “Investigating Cyclical Asymmetries”, Studies in Nonlinear Dynamics and Econometrics 2, pp. 15-22.

Waczak, Steven (2001), “An Empirical Analysis of Data Requirements for Financial Forecasting with Neural Networks”, Journal of Management Information Systems, vol. 17, núm. 4, pp. 203-222.

Cerpa, Narciso, y Steven Walczak (1999), “Heuristic principles for the design of artificial neural networks”, Information and Software Technology, vol. 41, núm. 2, pp. 109-119.

Weigend, A. S., y N. A. Gershenfeld (1994), Time Series Prediction: Forecasting the Future and Understanding the Past, Addison-Wesley.

Wheelwright, Steven C., y Spyros Makridakis (1985), Forecasting Methods for Management, Nueva York, John Wiley & Sons, Inc.

White, Halbert (1996), “Economic Prediction Using Neuronal Networks: The Case of IBM Daily Stock Prices”, Robert R. Trippi y Efraim Turban, Neuronal Networks in Finance and Investing, Chicago, Irwin Professional Publishing.

Wolberg, John R. (2000), Expert Trading Systems, Nueva York, John Wiley & Sons, Inc.




DOI: http://dx.doi.org/10.20430/ete.v74i294.370

Enlaces refback

  • No hay ningún enlace refback.


Revista El Trimestre Económico, volumen LXXXVI (3), número 343, julio-septiembre de 2019. Es una publicación trimestral que aparece en enero, abril, julio y octubre, editada por el Fondo de Cultura Económica, con domicilio en  Carretera Picacho Ajusco número 227, Col. Bosques del Pedregal, Delegación Tlalpan, C.P.  14738, Ciudad de México, teléfono (55) 5227 4672, ext. 1850, http://www.eltrimestreeconomico.com.mx/. Reserva de derechos al uso exclusivo  Número 04-2016-052612421000-203, ISSN 2448-718X. Ambos otorgados por el Instituto del Derecho de Autor. Consejo Directivo de El Trimestre Económico: Julio Boltvinik, Orlando Delgado Selley, Saúl Escobar Toledo y José Valenzuela Feijóo. Responsable de la última actualización de este número: Nuria Pliego Vinageras, Secretaria Técnica, Fecha de la última actualización:  5 de julio de 2019. La responsabilidad por lo expresado en los artículos, notas y reseñas es  estrictamente de sus autores; en consecuencia El Trimestre Económico, el Fondo de Cultura Económica y las instituciones a las que estén asociados los autores son ajenos a ella. Todos los derechos reservados. Se autoriza la reproducción total o parcial de los artículos  aquí presentados, siempre y cuando no se mutile y se incluya en todos los casos, junto con la ficha completa, el nombre del autor al que se cite y la  dirección electrónica de la revista; de otra forma, requerirá la autorización por escrito de El Trimestre Económico.